Architectural Railing Division
C.R.Laurence Co., Inc.

2503 E Vernon Ave.
Los Angeles, CA 90058
(T) 800.421 .6144
(F) 800.587 .7501
www.crlaurence.com

SUBJ: GLASS AWNING SUPPORT SYSTEM

The Glass Awning Support System utilizes stainless steel fittings to construct frameless glass awnings. The system is intended for interior and exterior weather exposed applications and is suitable for use in all natural environments. The system may be used for residential, commercial and industrial applications. The Glass Awning Support System is designed for the following criteria:

The design loading conditions are:
Concentrated load $=50 \mathrm{lbs}$ any direction, any location
Uniform load $=25 \mathrm{psf}$ vertical, live, wind or snow load
The glass awning is not intended to support significant concentrated live loads or personnel. It shall not be used to walk, stand or step on.

The Awning Support System will meet or exceed all requirements of the 1997 Uniform Building Code, 2000, 2003 and 2006 International Building Codes, and California Building Standards Code. Stainless steel components are designed in accordance with SEI/ ASCE 8-02 Specification for the Design of Cold-Formed Stainless Steel Structural Members. Wood components and anchorage to wood are designed in accordance with the National Design Specification for Wood Construction.

Edward Robison, P.E.
Attachments - Calculations 5 pages

EDWARD C. ROBISON, PE
10012 CREVISTON DR NW
GIG HARBOR, WA 98329

CRL GLASS AWNING SUPPORT SYSTEM

Support hardware for flat panel awnings such as laminated glass.

Support Rod: 1/2" (12 mm) diameter stainless steel

$$
\begin{aligned}
& \mathrm{I}=0.00307 \mathrm{in}^{4}, \quad \mathrm{~A}=0.196 \mathrm{in}^{2} \\
& \mathrm{r}=0.125 \mathrm{in}
\end{aligned}
$$

Maximum allowable rod length: 62"

$$
\begin{aligned}
& \mathrm{kl} / \mathrm{r}=0.5 * 62 " / 0.125 "=256 \\
& \mathrm{~F}_{\mathrm{a}}=12 \pi^{2} \mathrm{E} /\left[23(\mathrm{kl} / \mathrm{r})^{2}\right]=2,121 \mathrm{psi} \text { (allowable compression stress) } \\
& \mathrm{P}_{\mathrm{a}}=2,121 \mathrm{psi}^{*} 0.31 \mathrm{in}^{2}=658 \# \text { compression force (wind uplift) } \\
& \mathrm{T}_{\mathrm{a}}=\emptyset \mathrm{A}_{\mathrm{n}} \mathrm{~F}_{\mathrm{y}} / 1.6=0.85 * 0.196 * 45 \mathrm{ksi} / 1.6=4,686 \#
\end{aligned}
$$

10012 CREVISTON DR NW
GIG HARBOR, WA 98329
253-858-0855

Wall Mount
The wall plate is mounted to the wall with two $3 / 8$ " anchors, type dependent on the wall construction. Typical strength of $3 / 8$ " anchor is minimum of $500 \#$ each for tension and shear.

Reaction from tie bar:
$\mathrm{V}=\mathrm{T}$ for bar at 45° angle (typical)
$\mathrm{V} / 1000+\mathrm{T} / 1000=1.0$
$\mathrm{V}=\mathrm{T}=500 \#$
Check connector bar strength:
$1 / 2 " \times 1$ " bar $Z=0.5^{*} 1^{2} / 4=0.25 \mathrm{in}^{3}, \mathrm{~F}_{\mathrm{y}}=28 \mathrm{ksi}$
$\mathrm{M}_{\mathrm{S}}=0.9 * 0.25 \mathrm{in}^{3} * 28 \mathrm{ksi} / 1.6=3,937 \#$ ",
okay for $500 \#$ tie bar load.

For 4' wide glass:
load to rod:
$1 / 2 * 4^{\prime} * \mathrm{~L} / 2 * \mathrm{~W}=\mathrm{LW}=500 \#$ allowable
where $\mathrm{W}=$ total uniform load and $\mathrm{L}=$ awning length
For $\mathrm{W}=31 \mathrm{psf}$ (6 psf dead load +25 psf live load)
$\mathrm{L}_{\text {max }}=500 / 31=16$ ' Limited to 9 ' by glass strength
Tie rod to glass connection bracket: Connector bar strength is same as for wall bracket therefore okay by inference.

Bottom cap screws into top side bracket:
$1 / 2$ " threaded stud with minimum $1 / 2$ " thread depth.
Strength $=1.107 \mathrm{in}^{2} * 0.5 " * 21 \mathrm{ksi}=11.6 \mathrm{k}$ for thread stripping $\mathrm{T}=0.196 \mathrm{in}^{2} * 56 \mathrm{ksi} * 0.75 / 1.6=5,145 \#$ for stud strength

5/8" diameter bracket bar:
$\mathrm{M}_{\mathrm{s}}=0.9 * 0.0407 \mathrm{in}^{3} * 45 \mathrm{ksi} / 1.6=1,030 \# "$
$\mathrm{H}=1,030 \# " / 1.125^{\prime \prime}=915 \#$ doesn't control strength
$1 / 4$ " connector pin strength:
$\mathrm{V}_{\mathrm{s}}=0.85 * 25 \mathrm{ksi}^{*} 0.049 \mathrm{in}^{2} / 1.6=650 \#>630 \#$ okay

Bottom Wall Mount

Bottom plate standoff for pivot: assume 630\# D+L total load

$$
\mathrm{M}=630 \# * 2.625 "=1,654 " \#
$$

Bottom plate: $\mathrm{f}_{\mathrm{b}}=1,654$ "\#/0.0414 $\mathrm{in}^{3}=39.9 \mathrm{ksi}$
Top Plate: $\mathrm{F}_{\mathrm{b}}=42$ ksi per SEI/ASCE 8-02
Top plate standoff for pivot

$$
\mathrm{M}=630 \# * 0.75^{\prime \prime}=473 " \#
$$

EDWARD C. ROBISON, PE 10012 CREVISTON DR NW GIG HARBOR, WA 98329 253-858-0855

$$
\mathrm{f}_{\mathrm{b}}=473 " \# / 0.0123 \mathrm{in}^{3}=38.5 \mathrm{ksi}
$$

Maximum tributary area per plate: $630 \# / 25 \mathrm{psf}=25.2 \mathrm{sf}$ for bottom plate.
Determine maximum tributary area to support rod:
Maximum rod length is 54 " (rod may not be longer for $1 / 2$ " diam. based on kl / r limits). Minimum angle of rod to horizontal is 35°.

From geometry:

$$
\begin{aligned}
& \mathrm{a}+\mathrm{b}=54 " \cos 35^{\circ}=44.23 " \\
& \mathrm{~b}=44.23 "-2.8125 "=41.4175 " \\
& \mathrm{~h}=54 " \sin 35^{\circ}=30.97 " \\
& \mathrm{c}_{\max }=12 " \text { so } \mathrm{B}_{\max }=44.23 "+14 "=58.23 "
\end{aligned}
$$

For an allowable bar compressive load of 658\#
Max Vertical load V $=658 \# * \sin 35^{\circ}=377 \#$
Uplift from wind check based on 25 psf wind load $\mathrm{Up}=25 \mathrm{psf}-0.6 * 6.5 \mathrm{psf}=21.1 \mathrm{psf}$
Max tributary area $=377 \# / 21.1 \mathrm{psf}=17.9 \mathrm{sf}$
Determine maximum L for $\mathrm{B}=58^{\prime \prime}\left(4^{\prime} 10^{\prime \prime}\right)$

$$
\begin{aligned}
& \mathrm{f}=\left(41.2^{\prime \prime 2} / 2+14^{\prime \prime *} * 48.2^{\prime \prime}\right) / 41.2 "=37 "=3.08^{\prime} \\
& \mathrm{L}=17.9 / 3.08 * 2=11.61
\end{aligned}
$$

Double bracket (Two adjacent awning panes)

Bending on connection bar between double bracket and wall mount.
$\mathrm{Z}=0.5^{3} / 6=0.0208 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{S}}=0.0208 * 50 \mathrm{ksi} * 0.9 / 1.6=586 \#$ "
P = 586\#'/1" = 586\#
293\# allowable for each pane:
Maximum pane size based on 31 psf total load
$293 \# / 31 \mathrm{psf} * 4=37.8 \mathrm{sf}$.

GLASS STRENGTH

Glass is fully tempered 2 layer laminated safety glass conforming to the specifications of ANSI Z97.1, ASTM C 1048-97b and CPSC 16 CFR 1201. The minimum Modulus of Rupture for the glass Fr is 24,000 psi. Glass not used in guardrails may be designed for a safety factor of 2.5 in accordance with ASTM E1300-00.

Adjustment for laminated glass (both layers equal) $=1.7$ single layer strength
Allowable glass bending stress: $24,000 / 2.5=9,600$ psi. - Tension stress
Allowable bearing stress $=24,000 \mathrm{psi} / 2.5=9,600 \mathrm{psi}$.
Bending strength of glass for the given thickness:

$$
\mathrm{S}=\frac{12^{*} *(\mathrm{t})^{2}}{6}=2^{*}(\mathrm{t})^{2} \mathrm{in}^{3} / \mathrm{ft}
$$

The effective section modulus for 2 layers of $1 / 4$ " glass:
$\mathrm{S}=1.7 * 2 *(0.25)^{2}=0.2125 \mathrm{in}^{3} / \mathrm{ft}$
Allowable bending moment on glass is:
$\mathrm{M}_{\mathrm{a}}=9,600 \mathrm{psi}^{*} 0.2125 \mathrm{in}^{3} / \mathrm{ft}=2,040 " \# / \mathrm{ft}$
Determine critical panel stress from bending:
Longitudinal bending
$\mathrm{M}_{1}=\mathrm{W}^{*} \mathrm{e}^{2} / 8$ for uniform load W and span L or
$\mathrm{M}_{1}=\mathrm{P}^{*} \mathrm{e} / 4$ for concentrated load P and span L , highest moment $\mathrm{P} @$ center.
$\mathrm{M}_{\mathrm{d}}=\mathrm{W} * \mathrm{~d}^{2} / 2$ at support axis
$\mathrm{M}_{\mathrm{d}}=\mathrm{P}^{*} \mathrm{~d}$
Transverse bending
$\mathrm{M}_{\mathrm{t}}=\mathrm{L} / 2 * \mathrm{~W}^{*} \mathrm{~b}^{2} / 8$
$\mathrm{M}_{\mathrm{t}}=\mathrm{L} / 2 * \mathrm{~W} * \mathrm{c}^{2} / 2$
For a design load of $\mathrm{W}=25 \mathrm{psf}$ (live or wind) or $\mathrm{P}=50 \mathrm{lb}$ load
$\mathrm{e}=\left[(2,040 \text { " } \# / 12)^{*} 8 / 25 \mathrm{psf}\right]^{1 / 2}=7.376^{\prime}=88.5^{\prime \prime}$ Controls for e
$\mathrm{e}=2,040 " \# * 4 / 50=163 "=13.6^{\prime}$
$\mathrm{d}=\left[\left(2,040^{\prime \prime} \# / 12\right)^{*} 2 / 25 \mathrm{psf}\right]^{1 / 2}=3.68^{\prime}=44^{\prime \prime}$
$\mathrm{d}=2,040^{\prime \prime} \# / 50=40.8^{\prime \prime}=3.4^{\prime}$ Controls for d
For maximum $\mathrm{L}=10^{\text {, }}$

$$
\mathrm{b}=\left[\left(2,040^{\prime \prime} \# / 12\right)^{*} 8 /\left(5^{\prime} * 25 \mathrm{psf}\right)\right]^{1 / 2}=3.30^{\prime}=39.6^{\prime \prime}
$$

For b $=41.4175^{\prime}, \mathrm{L} \leq\left[(2,040 " \# / 12) * 8 /\left(3.45^{2} * 25 \mathrm{psf}\right) * 2=9.14{ }^{\prime}=109^{\prime \prime}\right.$
$\mathrm{c}=\left[\left(2,040^{\prime \prime} \# / 12\right) * 2 /\left(5^{\prime} * 25 \mathrm{psf}\right)\right]^{1 / 2}=1.17^{\prime}=14^{\prime \prime}$

MAXIMUM PANEL SIZE:
Maximum width $B=4^{\prime} 10^{\prime \prime}$ from hanger geometry + cantilever from glass bending
Maximum length $L=10^{\prime}$ from glass bending strength
Panel dimensions: Illustrative for typical panel.

Dim maximum	for 4' x 6 ' panel
$\mathrm{a}=2-13 / 16^{\prime \prime}$	fixed length for all panel sizes
$\mathrm{b} \leq 41.4175^{\prime \prime}$ For $\mathrm{L} \leq 109^{\prime \prime}$	$35.3 / 8^{\prime \prime}$
$39.6^{\prime \prime} \leq \mathrm{b} \leq 41.4175^{\prime \prime}$ For $109^{\prime \prime}<\mathrm{L} \leq 120^{\prime \prime}$	
$\mathrm{c} \leq 14^{\prime \prime}$	$9-13 / 16^{\prime \prime}$
$\mathrm{B}=\mathrm{a}+\mathrm{b}+\mathrm{c} \leq 58^{\prime \prime}$	$48^{\prime \prime}$
$\mathrm{d} \leq 27^{\prime \prime}$	$13-3 / 8^{\prime \prime}$
$\mathrm{e} \leq 88.5 "$	$45-1 / 4^{\prime \prime}$
$\mathrm{L}=2 \mathrm{~d}+\mathrm{e} \leq 132^{\prime \prime}$	$72^{\prime \prime}$

MAXIMUM ALLOWABLE LOADS:
500\# per connection point
Total awning pane: 2,000\# total dead plus live or snow or wind for support strength.
Limited by glass strength to $1,500 \#$ total for 2 ply $1 / 4$ " laminated glass ($9 / 16$ " total).
Double bracket: 586\# total, 293\# each pane tributary to bracket.
DESIGN CRITERIA
IBC Section 3105 Awnings and Canopies
IBC Section 2404.4

